(10x+5)/(x^2+2x)*((4x^2+x+2)/(4x^2-1))

Simple and best practice solution for (10x+5)/(x^2+2x)*((4x^2+x+2)/(4x^2-1)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (10x+5)/(x^2+2x)*((4x^2+x+2)/(4x^2-1)) equation:


D( x )

4*x^2-1 = 0

x^2+2*x = 0

4*x^2-1 = 0

4*x^2-1 = 0

4*x^2 = 1 // : 4

x^2 = 1/4

x^2 = 1/4 // ^ 1/2

abs(x) = 1/2

x = 1/2 or x = -1/2

x^2+2*x = 0

x^2+2*x = 0

x^2+2*x = 0

DELTA = 2^2-(0*1*4)

DELTA = 4

DELTA > 0

x = (4^(1/2)-2)/(1*2) or x = (-4^(1/2)-2)/(1*2)

x = 0 or x = -2

x in (-oo:-2) U (-2:-1/2) U (-1/2:0) U (0:1/2) U (1/2:+oo)

((10*x+5)/(x^2+2*x))*((4*x^2+x+2)/(4*x^2-1)) = 0

((10*x+5)*(4*x^2+x+2))/((x^2+2*x)*(4*x^2-1)) = 0

x^2+2*x = 0

x*(x+2) = 0

x+2 = 0 // - 2

x = -2

x*(x+2) = 0

4*x^2+x+2 = 0

4*x^2+x+2 = 0

DELTA = 1^2-(2*4*4)

DELTA = -31

DELTA < 0

1 = 0

(10*x+5)/(x*(x+2)*(4*x^2-1)) = 0

10*x+5 = 0 // - 5

10*x = -5 // : 10

x = -5/10

x = -1/2

x in { -1/2}

x belongs to the empty set

See similar equations:

| -4x+-8=24 | | d+(d+2338)=15012 | | 2+2=16-x | | 2+x-5=12 | | x^2+18+81=15 | | 16+x-5=25 | | -2r-10=2r-6r | | -2r-10=2r-6 | | 10-2a=23 | | x^2+10+9= | | (2x+5)(x+6)=0 | | 6-x-x+5=12+3 | | 12m-15=21 | | 1/4(3x+8)=16 | | 3y/(10y-30)+5y/(6y-18) | | 60=-22+a | | 7/8-(-1/10)+(-3/5)= | | 4.25-7.06= | | -7/10+(-5/12)-(1/4)= | | -100+j=345 | | -19=-4+g | | 2/3(9-6)+40= | | 8x^2-8/x/8(x^2+8)/26x^2-31x | | 6y/y-10=9y/y-10 | | 4x+9+8x+3=180 | | z/-7=23 | | -12+3f=3 | | 1.42y=3.16(y-8.57) | | x+(-5)=-8 | | (g+6)=-20 | | 5x^2-5x+10=x^2+10x | | 5w+7=2w+7 |

Equations solver categories